No Image

Плавное погасание и зажигание гирлянды

СОДЕРЖАНИЕ
0 просмотров
11 марта 2020

На просторах интернета имеется множество схем плавного розжига и затухания светодиодов с питанием от 12В, которые можно сделать своими руками. Все они имеют свои достоинства и недостатки, различаются уровнем сложности и качеством электронной схемы. Как правило, в большинстве случаев нет смысла сооружать громоздкие платы с дорогостоящими деталями. Чтобы кристалл светодиода в момент включения плавно набирал яркость и также плавно погасал в момент выключения, достаточно одного МОП транзистора с небольшой обвязкой.

Схема и принцип ее работы

Рассмотрим один из наиболее простых вариантов схемы плавного включения и выключения светодиодов с управлением по плюсовому проводу. Помимо простоты исполнения, данная простейшая схема имеет высокую надежность и невысокую себестоимость. В начальный момент времени при подаче напряжения питания через резистор R2 начинает протекать ток, и заряжается конденсатор С1. Напряжение на конденсаторе не может измениться мгновенно, что способствует плавному открытию транзистора VT1. Нарастающий ток затвора (вывод 1) проходит через R1 и приводит к росту положительного потенциала на стоке полевого транзистора (вывод 2). В результате происходит плавное включение нагрузки из светодиодов.

В момент отключения питания происходит разрыв электрической цепи по «управляющему плюсу». Конденсатор начинает разряжаться, отдавая энергию резисторам R3 и R1. Скорость разряда определяется номиналом резистора R3. Чем больше его сопротивление, тем больше накопленной энергии уйдет в транзистор, а значит, дольше будет длиться процесс затухания.

Для возможности настройки времени полного включения и выключения нагрузки, в схему можно добавить подстроечные резисторы R4 и R5. При этом, для корректности работы, схему рекомендуется использовать с резисторами R2 и R3 небольшого номинала. Любую из схем можно самостоятельно собрать на плате небольшого размера.

Элементы схемы

Главный элемент управления – мощный n-канальный МОП транзистор IRF540, ток стока которого может достигать 23 А, а напряжение сток-исток – 100В. Рассматриваемое схемотехническое решение не предусматривает работу транзистора в предельных режимах. Поэтому радиатор ему не потребуется.

Вместо IRF540 можно воспользоваться отечественным аналогом КП540.

Сопротивление R2 отвечает за плавный розжиг светодиодов. Его значение должно быть в пределах 30–68 кОм и подбирается в процессе наладки исходя из личных предпочтений. Вместо него можно установить компактный подстроечный многооборотный резистор на 67 кОм. В таком случае можно корректировать время розжига с помощью отвертки.

Сопротивление R3 отвечает за плавное затухание светодиодов. Оптимальный диапазон его значений 20–51 кОм. Вместо него также можно запаять подстроечный резистор, чтобы корректировать время затухания. Последовательно с подстроечными резисторами R2 и R3 желательно запаять по одному постоянному сопротивлению небольшого номинала. Они всегда ограничат ток и предотвратят короткое замыкание, если подстроечные резисторы выкрутить в ноль.

Читайте также:  Экспедиционный багажник на уаз патриот

Сопротивление R1 служит для задания тока затвора. Для транзистора IRF540 достаточно номинала 10 кОм. Минимальная емкость конденсатора С1 должна составлять 220 мкФ с предельным напряжением 16 В. Ёмкость можно увеличить до 470 мкФ, что одновременно увеличит время полного включения и выключения. Также можно взять конденсатор на большее напряжение, но тогда придется увеличить размеры печатной платы.

Управление по «минусу»

Выше переведенные схемы отлично подходят для применения в автомобиле. Однако сложность некоторых электрических схем состоит в том, что часть контактов замыкается по плюсу, а часть – по минусу (общему проводу или корпусу). Чтобы управлять приведенной схемой по минусу питания, её нужно немного доработать. Транзистор нужно заменить на p-канальный, например IRF9540N. Минусовой вывод конденсатора соединить с общей точкой трёх резисторов, а плюсовой вывод замкнуть на исток VT1. Доработанная схема будет иметь питание с обратной полярностью, а управляющий плюсовой контакт сменится на минусовой.

Автомат позволяет плавно переключать гирлянды, причем в зависимости от регулировки автомата они будут или плавно загораться и резко гаснуть, или резко загораться и плавно гаснуть. Такой эффект возникает в результате биений между частотой питающей сети и частотой импульсов управления тринисторами, коммутирующими цепи гирлянд.

Автомат состоит из задающего генератора, генератора управляющих импульсов, электронных ключей и тринисторных регуляторов мощности.

Задающий генератор собран на транзисторах VT4 и VT5 по схеме несимметричного мультивибратора с емкостной связью между эмиттерами транзисторов. Выходные импульсы мультивибратора следуют с частотой примерно 300 Гц — ее можно регулировать в пределах примерно 20 Гц переменным резистором R13. Стабильность частоты обеспечивается питанием мультивибратора от параметрического стабилизатора напряжения на стабилитроне VD9 (резистор R7 — балластный).

Триггеры DD1 и DD2 работают в генераторе управляющих импульсов, представляющем собой синхронный счетчик-делитель на 3.

Импульсы на синхронизирующие входы триггеров (выводы 12) поступают с задающего генератора. При этом на выходах счетчика появляются импульсы, следующие с частотой 100 Гц. С помощью дифференцирующих цепочек C2R1, C3R5 и C4R5 задние фронты импульсов (они сдвинуты относительно друг друга на треть периода следования импульсов) счетчика преобразуются в короткие отрицательные импульсы, открывающие транзисторы VT1—VT3 электронных ключей. Импульсы же коллекторных токов транзисторов открывают тринисторы VS1—VS3 и включают гирлянды ламп EL1 — EL3.

Гирлянды питаются от двухполупериодного выпрямителя на диодах VD1 — VD4, включенных по мостовой схеме. Поскольку сглаживающего конденсатора на выходе выпрямителя нет, частота питающего напряжения равна удвоенной частоте сетевого, т. е 100 Гц. Если частота управляющих импульсов немного превышает ее, то в результате биений обоих сигналов наблюдается плавное нарастание яркости свечения ламп с последующим их резким выключением. При обратном соотношении частот гирлянды включаются резко и плавно гаснут. Переменный резистор R13 позволяет изменять частоту биений в обе стороны от нуля (среднее положение движка резистора) на 5. 7 Гц.

Читайте также:  Почему педаль сцепления стала тугой

Питание на транзисторные ключи и генераторы подается с выпрямителя на диодах VD5—VD8, также включенных по мостовой схеме. Переменное напряжение на этот выпрямитель подается со вторичной обмотки понижающего трансформатора Т1. Выпрямленное напряжение сглаживается оксидным конденсатором С1.

Вместо указанных на схеме транзисторов МП25Б можно использовать другие германиевые или кремниевые транзисторы структуры p-n-р, допускающие ток коллектора до 300 мА и напряжение между коллектором и эмиттером не менее 30 В, а также обладающие коэффициентом передачи тока более 30. В задающем генераторе могут работать другие транзисторы серии КТ315 или КТ312 с коэффициентом передачи не менее 50. Диоды Д246 заменимы на другие, обеспечивающие выпрямленный ток не менее 1 А (для гирлянд мощностью до 200 Вт) и рассчитанные на обратное напряжение более 300 В. Вместо Д226Д подойдут другие диоды этой серии. Постоянные резисторы — МЛТ-0,25, МЛТ-1 (R7), переменный R13 — СП-1. Конденсаторы С1 — К50-6, С2—С4 — КЛС, С5 и С6— МБМ. Тринисторы, кроме указанных на схеме, могут быть КУ202Л, КУ201Л. Трансформатор питания — унифицированный выходной трансформатор кадровой развертки телевизора (ТВК-70Л2) либо другой готовый трансформатор мощностью не менее 10 Вт и с напряжением на обмотке 11 около 11 В. Подойдет трансформатор и с большим напряжением, но тогда придется более точно подобрать резисторы R2, R4, R6, R7 (установить резисторы с большим сопротивлением). Часть деталей автомата монтируют на печатной плате (рис. П-21) из фольгированного стеклотекстолита. Выводы катодов и управляющих электродов тринисторов соединяют с соответствующими точками платы монтажными проводниками в изоляции. Кроме того, при использовании гирлянд мощностью более 200 Вт каждый тринистор желательно установить на небольшой радиатор (в этом случае на радиатор устанавливают и мощные диоды VD1—VD4). Выпрямительные диоды и трансформатор укрепляют на отдельной плате из изоляционного материала и монтируют навесным способом. Переменный резистор и сетевой выключатель Q1 устанавливают на корпусе автомата, на задней стенке которого крепят держатель с предохранителем FU1. Для облегчения подключения гирлянд можно укрепить на задней стенке разъемы (они н« показаны на схеме) в виде сетевы) розеток.

Налаживание автомата сводится к подбору (если это необходимо] резистора R11. Для этого вместо него временно включают переменный резистор сопротивлением 22 или 33 кОм. Движок переменного резистора R13 устанавливают примерно в среднее положение и, перемещая движок дополнительного резистора, добиваются нулевой частоты биений (иначе говоря, остановки переключения гирлянд). Измерив получившееся сопротивление дополнительного резистора, впаивают в автомат постоянный резистор с таким же сопротивлением.

Читайте также:  Кольцо уплотнительное гильзы камаз

Б.С. Иванов. Энциклопедия начинающего радиолюбителя

Сайт для радиолюбителей

Устройство дает эффект последовательного зажигания всех 4-х гирлянд, в одном направлении, а затем последовательное гашение в обратном направлении.

В основе схемы лежит микросхема D5, она содержит четыре RS-триггера, которые управляются двумя счетчиками с десятичными выходами (D3D4). Счетчики включены последовательно. Например: Сначала D3 считает от 0 до 5, затем досчитав до 5, он устанавливается в нулевое состояние и больше не считает. В то же время начинает работать D4, он то же считает до 5 и устанавливается в нулевое состояние. Затем начинает считать D3… И так повторяется все время.
Выходы счетчиков подключены в входам триггеров таким образом, чтобы счетчик D3 установил последовательно триггеры в единичное состояние, начиная с верхнего (по схеме), а D4 — в нулевое состояние, начиная с нижнего(по схеме).
Импульсы поступающие на входы счетчиков вырабатывает мультивибратор D1. Его частота регулируется резистором R1, от него зависит скорость работы всего уст-ва.
Включение и выключение счетчиков производится при помощи D2.1 D2.2. При этом при подаче лог. нуля на вывод 1 D2.1 считает D3, а при подаче нуля на вывод 12 D2.2 считает D3. Управляет этими элементами RS-триггер на D2.3 D2.4. Как только счетчик D3 досчитает до 5-и, на его выводе 1 появится единица. Она сначала поступает на вывод 5 D2.3 и переключает триггер на D2.3 D2.4 в противоположное состояние. При этом нуль на выводе 4 D2.3 открывает D2.2 и вступает в работу счетчик D4. И в то же время, единица с вывода 10 D2.4 закрывает элемент D2.1 и включается D3. Потом единица с вывода 1 D3 через линию задержки R3C2 поступает на вход R D3, и переводит счетчик в нулевое состояние. При этом на всех задействованных в схеме, выводах D3 устанавливаются лог. нули. Теперь считать будет только D4, и как только досчитает до 5-и, единица с его вывода 1 поступит на триггер на D2.3 D2.4 и переведет его в исходное состояние. D3 включится, а D4 выключится и установится в нулевое состояние. Затем все повторится.

На выходах триггера D5 включены тиристоры которые переключают гирлянды. Система питания гирлянд и микросхем такая же как в статье Новогодние мигалки (на две гирлянды) .

Настройка схемы заключается в установке нужных пределов регулировки частоты переключения гирлянд подбором R2.

Комментировать
0 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
No Image Автомобили
0 комментариев
No Image Автомобили
0 комментариев
No Image Автомобили
0 комментариев
Adblock detector