No Image

Устройство водородного топливного элемента

СОДЕРЖАНИЕ
0 просмотров
11 марта 2020

Топливный элемент — устройство, эффективно вырабатывающее тепло и постоянный ток в результате электрохимической реакции и использующее богатое водородом топливо. По принципу работы он схож с батареей. Конструктивно топливный элемент представлен катодом, анодом и электролитом. Чем он примечателен? В отличие от тех же батарей, топливные элементы на водороде не накапливают электрическую энергию, не нуждаются в электричестве для повторной зарядки и не разряжаются. Выработка электроэнергии ячейками продолжается до тех пор, пока у них имеется запас воздуха и топлива.

Особенности

Отличием топливных ячеек от прочих генераторов электроэнергии является то, что за время работы они не сжигают топливо. Ввиду такой особенности они не нуждаются в роторах высокого давления, не издают громкого шума и вибраций. Электричество в топливных элементах вырабатывается в результате бесшумной электрохимической реакции. Химическая энергия топлива в таких устройствах преобразуется напрямую в воду, тепло и электричество.

Топливные элементы отличаются высокой эффективностью и не производят большого количества парниковых газов. Продуктом выброса при работе ячеек являются небольшое количество воды в виде пара и углекислого газа, который не выделяется в случае, если в качестве топлива выступает чистый водород.

История появления

В 1950-1960-х годах возникшая потребность NASA в источниках энергии для длительных космических миссий спровоцировала одну из наиболее ответственных задач для существовавших на тот момент топливных элементов. Щелочные элементы используют в качестве топлива кислород и водород, которые в ходе электрохимической реакции преобразуются в побочные продукты, полезные во время космического полета — электричество, воду и тепло.

Топливные элементы впервые были открыты в начале XIX века — в 1838 году. В это же время появились первые сведения об их эффективности.

Работа над топливными элементами, использующими щелочные электролиты, началась в конце 1930-х годов. Ячейки с никелированными электродами под высоким давлением были изобретены только к 1939 году. Во время Второй Мировой войны для британских подлодок разрабатывались топливные элементы, состоящие из щелочных ячеек диаметром около 25 сантиметров.

Интерес к ним возрос в 1950-80-х годах, характеризующихся нехваткой нефтяного топлива. Страны мира начали заниматься вопросами загрязнения воздуха и окружающей среды, стремясь разработать экологически безопасные способы получения электроэнергии. Технология производства топливных ячеек на сегодняшний день переживает активное развитие.

Принцип работы

Тепло и электроэнергия вырабатываются топливным ячейками в результате электрохимической реакции, проходящей с использованием катода, анода и электролита.

Катод и анод разделены проводящим протоны электролитом. После поступления кислорода на катод и водорода на анод запускается химическая реакция, результатом которой становятся тепло, ток и вода.

Молекулярный водород диссоциирует на катализаторе анода, что приводит к потере им электронов. Ионы водорода поступают к катоду через электролит, одновременно электроны проходят по внешней электрической сети и создают постоянный ток, который используется для питания оборудования. Молекула кислорода на катализаторе катода объединяется с электроном и поступившим протоном, образуя в итоге воду, являющуюся единственным продуктом реакции.

Выбор конкретного вида топливной ячейки зависит от области ее применения. Все топливные элементы подразделяются на две основные категории — высокотемпературные и низкотемпературные. Вторые в качестве топлива используют чистый водород. Подобные устройства, как правило, требуют переработки первичного топлива в чистый водород. Процесс осуществляется с использованием специального оборудования.

Высокотемпературные топливные элементы не нуждаются в подобном, поскольку они преобразуют топливо при повышенных температурах, что исключает необходимость создания водородной инфраструктуры.

Принцип работы топливных элементов на водороде основан на превращении химической энергии в электрическую без малоэффективных процессов горения и трансформации тепловой энергии в механическую.

Общие понятия

Водородные топливные элементы представляют собой электрохимические устройства, вырабатывающие электроэнергию в результате высокоэффективного "холодного" горения топлива. Различают несколько типов подобных приборов. Наиболее перспективной технологией считаются водород-воздушные топливные элементы, оснащенные протонообменной мембранной PEMFC.

Протонпроводящая полимерная мембрана предназначена для разделения двух электродов — катода и анода. Каждый из них представлен угольной матрицей с нанесенным на нее катализатором. Молекулярный водород диссоциирует на катализаторе анода, отдавая электроны. Катионы проводятся к катоду через мембрану, однако электроны передаются во внешнюю цепь, поскольку мембрана не предназначена для передачи электронов.

Молекула кислорода на катализаторе катода объединяется с электроном из электрической цепи и поступившим протоном, образуя в итоге воду, являющуюся единственным продуктом реакции.

Топливные элементы на водороде используются для изготовления мембранно-электродных блоков, которые выступают в качестве основных генерирующих элементов энергетической системы.

Преимущества водородных топливных ячеек

Среди них следует выделить:

  • Повышенная удельная теплоемкость.
  • Широкий температурный диапазон эксплуатации.
  • Отсутствие вибрации, шума и теплового пятна.
  • Надежность при холодном запуске.
  • Отсутствие саморазряда, что обеспечивает длительный срок хранения энергии.
  • Неограниченная автономность благодаря возможности корректировки энергоемкости за счет изменения числа топливных баллончиков.
  • Обеспечение практически любой энергоемкости благодаря изменению емкости хранилища водорода.
  • Длительный срок эксплуатации.
  • Бесшумность и экологичность работы.
  • Высокий уровень энергоемкости.
  • Толерантность к сторонним примесям в водороде.

Область применения

Благодаря высокому КПД топливные элементы на водороде применяются в различных областях:

  • Портативные зарядные устройства.
  • Энергоснабжающие системы для БПЛА.
  • Источники бесперебойного питания.
  • Прочие устройства и оборудование.

Перспективы водородной энергетики

Повсеместное использование топливных элементов на перекиси водорода будет возможно только после создания эффективного способа получения водорода. Для введения технологии в активное использование требуются новые идеи, при этом большие надежды возлагаются на концепцию биотопливных элементов и нанотехнологии. Некоторые компании сравнительно недавно выпустили эффективные катализаторы на основе различных металлов, одновременно с чем появились сведения о создании топливных ячеек без мембран, что позволило значительно удешевить производство и упростить конструкцию подобных устройств. Преимущества и характеристики топливных элементов на водороде не перевешивают их основного недостатка — высокой стоимости, особенно в сравнении с углеводородными устройствами. На создание одной водородной энергоустановки требуется минимум 500 тысяч долларов.

Как собрать топливный элемент на водороде?

Топливную ячейку небольшой мощности можно создать самостоятельно в условиях обычной домашней или школьной лаборатории. В качестве материалов используется старый противогаз, куски оргстекла, водный раствор этилового спирта и щелочь.

Корпус топливного элемента на водороде своими руками создается из оргстекла толщиной не менее пяти миллиметров. Перегородки между отсеками могут быть меньшей толщины — порядка 3 миллиметров. Оргстекло склеивается специальным клеем, изготавливаемым из хлороформа либо дихлорэтана и стружки из оргстекла. Все работы производятся только при работающей вытяжке.

В наружной стенке корпуса просверливается отверстие диаметром 5-6 сантиметров, в которое вставляется резиновая пробка и сливная стеклянная трубка. Активированный уголь из противогаза засыпается во второе и четвертое отделение корпуса топливного элемента — он будет использоваться в качестве электрода.

Циркуляция топлива будет осуществляться в первой камере, в то время как пятая заполняется воздухом, из которого будет поставляться кислород. Электролит, засыпающийся между электродами, пропитывается раствором парафина и бензина во избежание его попадания в воздушную камеру. На слой угля кладутся медные пластины с припаянными к ним проводами, через которые будет отводиться ток.

Читайте также:  Замена радиатора отопителя газель некст

Собранный топливный элемент на водороде заряжается водкой, разбавленной водой в соотношении 1:1. В полученную смесь аккуратно добавляется едкий калий: в 200 граммах воды растворяется 70 граммов калия.

Перед испытанием топливного элемента на водороде в первую камеру заливается топливо, в третью — электролит. Показания вольтметра, подключенного к электродам, должны варьироваться от 0,7 до 0,9 вольт. Для обеспечения непрерывной работы элемента отработанное топливо должно отводиться, а через резиновую трубку — заливаться новое. Сжиманием трубки регулируется скорость подачи топлива. Подобные топливные элементы на водороде, собранные в домашних условиях, обладают небольшой мощностью.

Водородные топливные элементы.

Водородные топливные элементы осуществляют превращение химической энергии топлива в электричество, минуя малоэффективные, идущие с большими потерями, процессы горения и превращения тепловой энергии в механическую.

Описание:

Водородные топливные элементы осуществляют превращение химической энергии топлива в электричество, минуя малоэффективные, идущие с большими потерями, процессы горения и превращения тепловой энергии в механическую. Водородный топливный элемент – это электрохимическое устройство в результате высокоэффективного «холодного» горения топлива непосредственно вырабатывает электроэнергию. Водород-воздушный топливный элемент с протон-обменной мембраной (PEMFC) является одной из наиболее перспективных технологий топливных элементов .

Протон-проводящая полимерная мембрана разделяет два электрода — анод и катод. Каждый электрод представляет собой угольную пластину (матрицу) с нанесённым катализатором. На катализаторе анода молекулярный водород диссоциирует и отдает электроны. Катионы водорода проводятся через мембрану к катоду, но электроны отдаются во внешнюю цепь, так как мембрана не пропускает электроны.

На катализаторе катода молекула кислорода соединяется с электроном (который подводится из электрической цепи) и пришедшим протоном и образует воду, которая является единственным продуктом реакции (в виде пара и/или жидкости).

Из водородных топливных элементов изготавливают мембранно-электродные блоки, являющиеся ключевым генерирующим элементом энергетической системы.

Преимущества водородных топливных элементов по сравнению с традиционными решениями:

– увеличенная удельная энергоемкость (500 ÷ 1000 Вт*ч/кг),

расширенный диапазон эксплуатационных температур (-40 0 С / +40 0 С),

– отсутствие теплового пятна, шума и вибрации,

надежность при холодном пуске,

– практически неограниченный срок хранения энергии (отсутствие саморазряда),

возможность изменения энергоемкости системы за счет изменения количества топливных баллончиков, что обеспечивает почти неограниченную автономность,

– возможность обеспечить практически любую разумную энергоемкость системы за счет изменения емкости хранилища водорода,

высокая энергоемкость,

– толерантность к примесям в водороде,

длительный срок службы,

– экологичность и бесшумность работы.

Применение:

системы энергоснабжения для БПЛА,

портативные зарядные устройства,

источники бесперебойного питания,

другие устройства.

водородный топливный элемент
водородный топливный элемент купить
водородно воздушные топливные элементы
водородные топливные элементы автомобилей
кислородно водородный топливный элемент
водородный топливный элемент своими руками
работа водородного топливного элемента
водородная энергетика топливные элементы
принцип работы водородного топливного элемента
водородные топливные элементы принцип работы и устройство
топливные водородные элементы ячейки
водородный топливный элемент цена
моделирование водородного топливного элемента
водородно воздушные топливные элементы купить
водородные топливные элементы развитие

Есть серьезные основания считать, что в XXI веке произойдет постепенное вытеснение ископаемых углеродсодержащих энергоносителей (уголь, нефть, газ) новым, экологически чистым — водородом.

Впервые о водороде как энергоносителе и, тем самым, о водородной энергетике речь зашла в романе Жюль Верна «Таинственный остров». В ходе неторопливой беседы его основных действующих лиц великий француз уже в 1874 г. высказал смелую мысль, что в будущем человечество будет получать энергию из воды, разлагая ее на водород и кислород, а затем сжигая водород.

Как бы фантастически эта идея ни звучала, она не является столь безумной, как может показаться на первый взгляд. Давайте попытаемся в меру собственных сил и способностей продолжить беседу Смита и Пенкрофа, а именно — рассмотреть (конечно, не во всех аспектах — объять необъятное невозможно) состояние дел по водородной энергетике и топливным элементам как ее важнейшей составляющей.

— Какое топливо заменит уголь?
— Bода, — ответил инженер.
— Вода? — переспросил Пенкроф. — Вода будет гореть в топках пароходов, локомотивов, вода будет нагревать воду?
— Да, но вода, разложенная на составные части, — пояснил Сайрес Смит. — Без сомнения, это будет делаться при помощи электричества, которое в руках человека станет могучей силой, ибо все великие открытия — таков непостижимый закон — следуют друг за другом и как бы дополняют друг друга.
Да, я уверен, что наступит день, и вода заменит топливо: водород и кислород, из которых она состоит, будут применяться и раздельно; они окажутся неисчерпаемым и таким мощным источником тепла и света, что углю до них далеко! Hacтупит день, друзья мои, и в трюмы пароходов, в тендеры паровозов станут грузить не уголь, а баллоны с двумя этими сжатыми газами, и они будут сгорать с огромнейшей тепловой отдачей.

Ж. Верн, «Таинственный остров»

От водорода — к топливным элементам

И все-таки — почему именно водород? До сих пор основными источниками энергии служили ископаемые углеродсодержащие топлива (уголь, нефть, газ). При их сжигании углерод окисляется кислородом воздуха, образуя всем известный углекислый газ (СО2). Многие считают, что именно он наравне с другими так называемыми парниковыми газами несет ответственность за потепление климата в последние десятилетия, грозящее нам экологическими катастрофами.

А что, кроме энергии, получается при соединении кислорода и водорода? Правильно — обыкновенная вода! Представьте себе автомобиль на водородном топливе — что может быть чище и безопаснее для окружающей среды? Единственное, но существеннейшее препятствие для использования водорода в качестве энергоносителя заключается в том, что в свободном состоянии его в природе практически НЕТ. Поэтому для создания водородной энергетики в первую очередь необходимы технологии, позволяющие наладить крупномасштабное производство водорода, а также его хранение и транспортировку. Второе, но не менее важное условие — создание промышленных энергоустановок нового поколения, в которых в качестве топлива будет использоваться водород.

Есть серьезные основания считать, что в XXI веке произойдет постепенное вытеснение ископаемых углеродсодержащих энергоносителей (уголь, нефть, газ) новым, экологически чистым — водородом. Впервые о водороде как энергоносителе и, тем самым, о водородной энергетике речь зашла в романе Жюль Верна «Таинственный остров». В ходе неторопливой беседы его основных действующих лиц великий француз уже в 1874 г. высказал смелую мысль, что в будущем человечество будет получать энергию из воды, разлагая ее на водород и кислород, а затем сжигая водород.
Как бы фантастически эта идея ни звучала, она не является столь безумной, как может показаться на первый взгляд. Давайте попытаемся в меру собственных сил и способностей продолжить беседу Смита и Пенкрофа, а именно — рассмотреть (конечно, не во всех аспектах — объять необъятное невозможно) состояние дел по водородной энергетике и топливным элементам как ее важнейшей составляющей

Читайте также:  Как на аккумуляторе бош определить дату выпуска

Но вернемся к водороду. Нелишне заметить, что водород и водородсодержащий газ (так называемый синтезгаз) традиционно широко применяются в различных отраслях экономики: химической, нефтеперерабатывающей, металлургической, радиоэлектронной, даже в пищевой промышленности (например, гидрированием растительных масел получают твердые жиры, маргарины).

Что же касается новых применений водорода, то при добавлении водорода или синтез-газа к обычным топливам можно получить немалый выигрыш даже при использовании их в обычных двигателях внутреннего сгорания или в газовых турбинах. В результате такого «облагораживания» топлива увеличивается КПД работы энергоустановок и улучшается состав выбросов.

Один из отцов водородной энергетики, президент Международной ассоциации по водородной энергетике Т. Н. Везирогли (США) даже утверждал, что спустя несколько десятилетий мы будем называться «водородной цивилизацией». И для такого утверждения есть все основания. Так, в 2000 г. общее производство водорода составило примерно 50 Мт, а оптимистические прогнозы на 2100 г. дают цифры примерно в 20 раз больше! В этом месте вдумчивый читатель должен уже впасть в недоумение и спросить: откуда и каким образом эти мегатонны должны появиться, если практически весь водород на планете находится в связанном виде? Прежде чем дать ответ на этот вопрос, познакомимся с тем, что скрывается за понятием топливный элемент.

Топливные элементы: «за» и «против»

Топливным элементом называют электрохимическое устройство, позволяющее превращать химическую энергию топлива в электроэнергию непосредственно, минуя процесс горения и механические преобразования типа сжатия и расширения. Помимо электричества топливный элемент, конечно, генерирует тепло.

Все типы топливных элементов устроены практически одинаково. Они представляют собой гальванические ячейки, в которых соответственно есть электролит и электродыанод и катод. Электроэнергия вырабатывается в результате окислительно-восстановительных превращений реагентов, непрерывно поступающих к электродам извне.

Если на анод топливного элемента с протонпроводящим полимерным электролитом подавать топливо (например, водород), а на катод — воздух или кислород, то на аноде будет протекать реакция разложения водорода на протоны и электроны. Протоны переносятся через электролит к катоду, где соединяются с кислородом, образуя воду, которая в виде пара выбрасывается наружу. Электроны же двигаются от анода к катоду по внешней цепи и, естественно, генерируют электрическую энергию.

Достоинств у топливных элементов много: высокий КПД (по сравнению с обычными источниками электроэнергии), низкая токсичность выбросов, бесшумность, модульная конструкция. Недостаток на сегодня один, но существенный: высокая стоимость.

КПД топливных элементов рассчитывается как отношение величины полученной электрической энергии к теплу, которое выделяется при сжигании топлива. И теоретически для некоторых окислительно-восстановительных реакций, протекающих в топливном элементе, он может быть больше единицы, хотя реально это никогда не достигается.

Почему же два понятия — водород и топливные элементы — постоянно встречаются рядом? Ответ прост: именно водород является для последних лучшим, к тому же — экологически чистым топливом. Все остальное преобразуется в них менее эффективно. Так что водородное топливо и топливные элементы представляют собой «неразлучную пару» с большим будущим. И с позиций энергетики выигрыш здесь очевиден, поскольку того же ископаемого топлива в «водородном виде» на производство энергии в энергоустановках на топливных элементах будет расходоваться существенно меньше, чем в традиционных.

Заправь ноутбук метанолом

Топливные элементы классифицируются по природе электролита. Например, щелочные, где электролитом является раствор щелочи, или твердополимерные, в которых электролитом «работает» полимерная протонпроводящая мембрана. В качестве топлива в твердополимерных топливных элементах может использоваться метанол. Его тоже можно окислять, хотя и менее эффективно, чем водород. Метанольные топливные элементы, по-видимому, наиболее перспективны для электропитания портативных устройств: ноутбуков, фотоаппаратов, сотовых телефонов и т. п.

Известны также фосфорно-кислотные топливные элементы, где электролитом является фосфорная кислота; твердооксидные топливные элементы, в которых в качестве электролита выступает керамика на основе диоксида циркония; и, наконец, расплав-карбонатные топливные элементы, где электролитом служит расплав карбонатов калия и лития. Рабочая температура для разных типов топливных элементов также различна. Так, твердополимерные топливные элементы работают при 80—100 °С, а два последних типа — в области очень высоких (650—1000 °С) температур.

Особенность всех типов топливных элементов заключается в небольшой величине напряжения, которое снимается с единичного элемента — обычно меньше одного вольта. Чтобы получить нужное напряжение, элементы соединяют в батарею. Однако даже батарея топливных элементов не является устройством, которое можно использовать в промышленности или в быту для получения электроэнергии. Сделать это можно только с помощью электрохимического генератора, представляющего собой батарею топливных элементов вместе с системами, обеспечивающими ее работу: управления, поддержания тепла, подготовки топлива (т.е. перевода любого топлива в водородсодержащий газ) и др.

КПД современных топливных элементов составляет 40—60 %, причем максимум, как уже говорилось, достигнут в устройствах на водороде. Если в качестве первичного топлива используется метан, КПД падает — из-за того, что часть энергии тратится на конвертирование метана в водородсодержащий газ. Кстати сказать, если в системе предусмотрена рекуперация (возвращение) тепла, то суммарный КПД, естественно, возрастает на 20—30 %.

В итоге уже реально получен КПД около 70 % — не правда ли, впечатляюще? При сравнении КПД топливных элементов и других современных энергоустановок (микротурбин, двигателей внутреннего сгорания, газовых турбин, ТЭЦ, дизелей и т. д.) убеждаешься, что в области низких мощностей конкурировать с топливными элементами ничто не может. Это — идеальный вариант в случае рассредоточенной или автономной энергетики, идея которой становится все более и более популярной в обществе — особенно после катастрофических системных энергетиче­ских аварий последнего времени.

Где взять водород?

Убедившись в достоинствах топливных элементов, снова возвращаемся к водороду как лучшему для них энергоносителю. Поскольку в природе свободного водорода нет, его надо каким-то образом получать. Принцип получения в целом прост: берете водородсодержащее вещество, прикладываете к нему энергию (в идеале — из возобновляемых источников) и — пожалуйста! Источников и путей получения водорода существует несколько. В первую очередь, это ископаемые и синтетические топлива. Примерно 50 % водорода сегодня получают из природного газа, около 30 % — из нефти. А еще есть уголь, биомасса, вода, в конце концов.

Но вот на следующем этапе появляется одно немаловажное но: существуют немалые трудности с хранением, аккумулированием полученного водорода и перезаправкой им энергетических устройств. Одно из решений этой проблемы состоит в получении водорода непосредственно рядом с энергоустановкой в устрой­стве, названном топливный процессор.

Вопрос о стоимости водорода сегодня непростой, поскольку он не является биржевым продуктом, да и процесс его получения пока еще слишком материало- и энергоемкий. Соответственно цена водорода на сегодняшний день договорная и высокая. Согласно оценкам Министерства энергетики США, к 2010 г. цена за водород будет составлять от 1,5 до 2,9 доллара за килограмм. Для сравнения: теплотворная способность 1 кг водорода равна примерно таковой 1 галлона (около 4 л) бензина. Поэтому для развития водородной энергетики крайне важно в ближайшее время научиться эффективно получать водород и синтез-газ из наиболее дешевого и доступного сырья — природного газа. (К слову: наша страна обладает примерно 40 % его потенциальных мировых запасов.)

Читайте также:  Запчасти на авто ларгус

На примере природного газа можно рассмотреть и общую схему подготовки углеводородного топлива для использования в топливных элементах. Первая стадия осуществляется при высокой температуре. Это каталитические реакции парциального окисления либо паровой и автотермической конверсии природного газа. В результате получается синтезгаз — смесь водорода и оксида углерода (СО). Этот газ уже можно использовать в качестве топлива для высокотемпературных топливных элементов, поскольку оксид углерода и водород при высоких температурах окисляются с высокой скоростью.

Для более низкотемпературных фосфорнокислотных топливных элементов синтез-газ уже надо очищать от СО, доводя его концентрацию до 1 объемного процента. В противном случае топливный элемент просто не работает: оксид углерода блокирует анод. Для еще более низкотемпературных (твердополимерных) топливных элементов требования к чистоте водорода очень жесткие: на 1 млн молекул водорода должно приходиться не более 10 молекул СО. Для столь глубокой очиcтки водородсодержащего газа используется каталитическая реакция селективного окисления СО в присутствии водорода, в результате чего образуется углекислый газ (СО2), который в этом случае не мешает.

Таким образом, подготовка углеводородного сырья наиболее проста для высокотемпературных топливных элементов. А поскольку они имеют самый высокий КПД, да к тому же для их производства не требуются драгоценные металлы, очевидно, что именно за этим типом топливных элементов будущее автономной стационарной энергетики.

«Сибирский» катализ

Наш внимательный читатель мог заметить, что в статье наконец-то прозвучало слово каталитический. Произошло это неслучайно, поскольку действительно высокоэффективные технологии получения водорода и синтез-газа из природного углеводородного сырья во всем мире разрабатываются на основе и исключительно благодаря катализаторам.

Хочется отметить, что хотя целенаправленные работы в этой области начались в нашей стране на 10—15 лет позже, чем за рубежом, отечественная наука в этом плане является, безусловно, конкурентоспособной. Так, в новосибирском Институте катализа им. Г. К. Борескова СО РАН разработаны высокоэффективные структурированные катализаторы для реакции парциального окисления метана в виде лент или блоков из термостойких металлических сплавов и керамики. На их основе созданы компактные реакторы для воздушной конверсии природного газа, обеспечивающие переработку около 4 м 3 метана в час на 1 л реактора.

Еще одна интересная разработка связана с реакцией паровой конверсии метана. Этот эндотермический процесс протекает при высоких температурах, поэтому часто лимитируется подводом тепла. Для решения проблемы была предложена «хитрая» система: с одной стороны металлической пластинки-катализатора идет реакция окисления метана с выделением тепла, с другой стороны – паровая конверсия. Тепло легко передается через пластинку, благодаря чему производительность реактора возрастает. На этом принципе при финансовой поддержке ОАО ГМК Норильский никель совместными усилиями специалистов Института катализа и Российского федерального ядерного центра ВНИИ эспериментальной физики (г. Саров) был создан первый топливный процессор для питания высокотемпературных топливных элементов.

Для портативных топливных элементов перспективным топливом считается боргидрид натрия. Реакция получения из него водорода — каталитическая. В том же Институте катализа разработаны блочные и гранулированные катализаторы, не уступающие лучшим мировым образцам, на основе которых совместно с московским Государственным научным центром РФ ГНИИ химии и технологии элементоорганических соединений уже созданы первые картриджи для питания портативных топливных элементов.

Как уже говорилось, для низкотемпературных топливных элементов требуется чистый водород, свободный как от оксида углерода, так и углекислого газа. Суть метода, предложенного сибирскими учеными, проста: если есть адсорбент, который будет поглощать в ходе паровой конверсии углеводородного топлива СО2 и СО, то, естественно, на выходе будет получаться чистый водород. Ясно, что если один адсорбер-реактор будет работать на поглощение, а другой на регенерацию, можно организовать непрерывный процесс. Идея эта уже реализована: действительно, удается получать водород чистотой 99 %!

У института много и других перспективных разработок. Например, катализаторы для пиролиза метана с получением водорода без выбросов СО2; мембранные реакторы, в которых природный газ окисляется кислородом, поступающим через специальную мембрану непосредственно из воздуха, и т. п. — упомянуть обо всех просто невозможно!

Как можно заметить, многие подобные разработки проводятся совместно с различными производственными компаниями, научными организациями и учреждениями, в том числе сибирскими. Роль Сибирского отделения РАН во многих областях, связанных с созданием водородной энергетики, может быть действительно велика. Это относится как к разработке новых технологий получения водорода и производства электрохимических устройств, так и к научному сопровождению промышленных технологий водородной энергетики, к участию в разработке прогнозов и программ российской энергетики. И, без сомнения, — к подготовке высококвалифицированных специалистов на базе Новосибирского государственного университета. Хочется думать, что и в дальнейшем российское энергетическое могущество будет прирастать Сибирью…

Не пароходы, но подводные лодки!

Подводя итог, можно констатировать, что водородная энергетика и топливные элементы как ее важнейшая часть весьма настойчиво стучатся в наши уже приоткрытые двери. Не исключено, что развитие водородной энергетики на базе топливных элементов будет одним из приоритетов мировой экономики в наступившем веке.

Многое для этого уже сделано, но предстоит еще больше. Смена энергоносителя — тернистый, длительный и капиталоемкий путь, на котором могут быть ошибки, но не должно быть «синдромов». Вспомним, как долго и трудно завоевывает место под солнцем атомная энергетика, доля которой в балансе топливно-энергетического комплекса до сих пор не превышает 7 %. Для достижения успеха на «водородном» пути нужны усилия химиков, физиков, математиков, материаловедов, энергетиков, экономистов — в конечном итоге всех землян!

Что уже сейчас есть в мире? Пока примерно 50 МВт — это вся установленная мощность реально существующих электрохимических генераторов. В демонстрационных испытаниях участвует не менее 100 компаний, но готового коммерческого продукта на этом рынке до сих пор нет.

Потребности же в энергетических установках на водороде неуклонно растут. Например, уже сейчас фактически нет ни одной автомобильной компании, которая не занималась бы разработкой автомобиля на топливных элементах. Уже созданы не только автобусы, ноутбуки, сотовые телефоны, но даже подводная лодка, использующая водородное топливо. Вот таким образом в XXI веке претворилась в жизнь мечта Жюля Верна!

Поток информации по водородной энергетике и топливным элементам сейчас нарастает лавинообразно — даже специалистам порой трудно следить за всеми новинками: более 10 периодических специализированных научных журналов, более 5 представительных ежегодных конференций, выставки, многочисленные веб-сайты. Читайте, анализируйте, делайте выводы, а время покажет, насколько пророческой оказалась мысль великого «технократического» романтика.

Комментировать
0 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
No Image Автомобили
0 комментариев
No Image Автомобили
0 комментариев
No Image Автомобили
0 комментариев
Adblock detector